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Fluctuation-Induced Couplings between 
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One-dimensional structures such as defect lines or chains of dipolar particles are 
generally subject to strong Landau-Peierls thermal fluctuations. Coupling 
between these fluctuations in parallel lines may lead to an attractive force, 
analogous to the London force, or to a repulsive force of entropic origin. We 
analyze these forces for chains of electric dipoles and for flux lines in isotropic 
superconductors. In the first case the force is attractive, and can significantly 
change the Hamaker constant, which governs the attraction between colloidal 
particles. In the second case, over much of the magnetic field-temperature phase 
diagram the force is repulsive, and dominates over the direct repulsive inter- 
action between flux lines. 
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1. I N T R O D U C T I O N  

In  m a n y  contexts in condensed mat ter  physics, one-dimensional  structures 
such as defect lines or chains of particles play a significant role. The most  
famous such defects are certainly Abrikosov flux lines in superconductors ,  
but  vortex lines in liquid helium and in l iquid crystal systems, and  defect 
lines in magnet ic  systems, behave in closely analogous  ways. (1-3l In all of 

these cases, the lines represent topological defects in an under lying order 
parameter ,  and  the dynamics  of the lines can be unders tood in terms of the 
dynamics  of that  order parameter.  (4) 
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Another type of one-dimensional structure arises in colloidal physics. 
Chains of particles play an important role in ferrofluids and in electro- 
rheological fluids, where respectively magnetic and electric dipole inter- 
actions between colloidal particles lead them to form roughly linear chains 
parallel to an applied field. (5'6) 

These chains and lines, being one-dimensional structures, will 
experience strong Landau-Peierls fluctuations. (7) Suppose that the devia- 
tion of the line or chain from its mean position is written as a(z), where z 
is the coordinate along the length of the line. Naively, we might expect the 
energy cost associated with this deviation to be proportional to (~3za) 2. It 
follows that the thermal expectation value (a2(z))  is given by a momen- 
tum space integral, 

(aZ(z)) oc f ~ (1,1) 

which diverges with the size of the system. 
Recently this fact has motivated very active theoretical and experimen- 

tal study of the behavior of Abrikosov vortex lines in high-temperature 
superconductors, where these fluctuations may alter the macroscopic 
behavior of the mixed phase of the superconductors. (8'9) It seems that under 
the right circumstances, a set of vortex lines will form a vortex liquid, 
possibly entangled, instead of the traditional Abrikosov vortex lattice. 
Larkin has argued that the vortex lattice is unstable with respect to 
quenched disorder in a material; thus, another possibility is that a phase 
with slow dynamics, which may or may not be a thermodynamic "vortex 
glass," replaces the Abrikosov solid. (1~ 

In this study we will address a different consequence of the Landau-  
Peierls fluctuations. In statistical mechanics, we are accustomed to the idea 
that thermal or quantum fluctuations can lead to an effective interaction, 
typically attractive, between separated bodies. A typical example is the 
London interaction due to quantum fluctuations, which leads to an attrac- 
tive r 6 interaction between separated atoms or molecules. (12) There are 
also Keesom interactions, important in colloidal physics, which arise from 
thermal fluctuations in the dipole moment of a colloidal particle. (13) These 
interactions also die off as r-6. 

Because one-dimensional structures experience such large thermal fluc- 
tuations, the macroscopic coupling between these fluctuations for different 
lines leads to an interaction comparable in strength to direct interactions. 

Parallel lines of electric dipoles offer an interesting example of this 
effect. For perfectly ordered lines, there is a weak interaction between lines 
arising from the periodic dipole moment along each line. This interaction 
dies off exponentially with distance, the scale of the decay being given by 
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the intraline dipole spacing. However, the lines will never be perfectly 
ordered, but will fluctuate thermally. When they so fluctuate, they develop 
local concentrations of dipole moments. The result is that the mean square 
electric field dies off as a power of distance p from a chain, 

a 
( E = )  ~k B T -~  (1.2) 

for dipolar particles of radius a. 
This leads to a power-law induced force between the lines, arising from 

the coupling between these dipole fluctuations in different lines. We find 
that the effective free energy F(l) of interaction between two fluctuating 
dipole chains separated by a distance l is 

a4L 
F(l) ~ - k  B T /~ (1.3) 

for chains of length L. This force is comparable in order of magnitude to 
but larger than the Keesom force arising from thermal fluctuations in the 
dipole moments of the individual particles. 

For  vortex lines in superconductors, we have a different situation. 
Often, we are interested in the regime in which the distance between vortex 
lines is of the same order of magnitude as the London penetration depth 
2, which determines the range of the interaction between lines. In this case, 
the interaction between lines arising from fluctuations is strongly repulsive. 
The interaction is repulsive because the field of a neighboring vortex line 
reduces the phase space for fluctuations of a line, and thus reduces the 
entropy of that line. The result is a contribution to the free energy of lines 
separated by a distance l, 

F ( I ) ~ k B T ( ~ )  2 exp(-l/Z) 
log(2/~)(l/2) m (1.4) 

for vortices of length L. Here ~ is the superconducting coherence length. 
Due to the divergence of the Landau-Peierls fluctuations, this interac- 

tion scales with L 2, while the ordinary direct interaction scales only as L. 
Thus, we find that, at least near the lower critical field He l, this repulsive 
interaction is much stronger than the direct repulsion between Abrikosov 
vortex lines. Of course, the above equation somewhat overstates the case. 
If the vortex lines are entangled, as may be the case near He1, then it will 
be more appropriate to use an entanglement correlation length in the place 
of L. (8) Nevertheless, the qualitative conclusion remains the same. 

The interactions here studied should not be confused with entropic 
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interactions arising from steric effects. Such interactions arise between 
domain walls in two-dimensional systems, or between fluctuating surfaces 
in three dimensions. (14) In these cases, the spatial confinement of ( d - 1 ) -  
dimensional objects by one another leads to a power law entropic repul- 
sion. In this paper, we study effects that are due entirely to long-range 
interactions between the lines. 

To some extent, this study is an academic exercise, as in neither of the 
two cases above do we expect this interaction to significantly alter the 
qualitative physics of the system. Nevertheless, this interaction provides a 
dramatic instance of the power of Landau-Peierls fluctuations. It is 
striking, for example, that the fluctuation-induced interaction should so 
strongly dominate over direct interactions (by factors of up to 10 4) in 
superconductors. 

This paper is divided into five sections and three appendices. In Sec- 
tion 2 we derive the fluctuation-induced interaction between dipole chains. 
In Section 3 we discuss the interaction between two fluctuating vortex lines. 
In Section 4 we extend this calculation to deal with fluctuations in the 
presence of a flux lattice. In Section 5 we argue that this interaction will not 
strongly affect the phase diagram of type II superconductors. Technical 
details are relegated to three appendices. In Appendix A, we derive the field 
of a wavy vortex line in a superconductor. In Appendix B, we calculate the 
interaction energy of two such lines. In Appendix C, we perform some sums 
relevant to the problem of the fluctuation effects in a flux lattice. 

2. D IPOLE C H A I N S  

In both electrorheological fluids and in ferrofluids a field induces the 
formation of chains of colloidal particles. We will treat the electric field 
case; the magnetic field case is a trivial generalization. Consider a very long 
line (of length L) of particles, each with dipole moment ds with the par- 
ticles aligned along the z axis with spacing a (see Fig. 1). We want to 
calculate the electric field at a point (p, z) outside of the line. Of course, 
we need an applied field in the z direction to induce the chaining in the 
first place. (6) We are more interested, however, in the field generated by 
the dipoles themselves, whose moments are regarded as fixed. This is 
equivalent to taking ~ -  1 ~ 1, where e is the dielectric constant of the 
particles. 

We expect solutions of Laplace's equation to be exponential in direc- 
tions perpendicular to an axis of periodicity; thus, we expect a field 
E ~ e p/a. Throughout  this paper, we will consistently refer to two-dimen- 
sional vectors in the x - y  plane by p, the magnitude of which is p. Three 
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Fig. I. A tine of dipoles. The field of the line is calculated at a position (l~, z), where p is a 
two-dimensional vector in the plane perpendicular to the line, and z is the altitude. 

d imens iona l  vectors  will be indica ted  by r. Final ly ,  we will use the two- 
d imens iona l  vector  ! to indicate  the unpe r tu rbed  dis tance  between two 
lines. 

The  z c o m p o n e n t  of the electric field due to a single d ipole  at  pos i t ion  
(p, z) = (0, na) is 

E(p, z) r -  3 3 1 = p-3 202 -  1 

where r = [p2 + (z - na) 2 ] 1/2, ~n = (z - na)/p, and  wi thou t  loss of general i ty  

we can set 0 < z < a. Then the field due to the entire chain is 

E(p,z)~=p_3~F(~bn)=p - 3 ~  f d ( b [ ~ 3 ( ~ b - ~ ( z - n a ) ) l F ( ~  ) (2.2) 

Using  the Po i sson  sum formula  and  the fact tha t  F(~b) is even, we ob ta in  

Amcos(R oZ) ,23, 
d P 2a ~=o 
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where 

Ao..~_ f +~ 

A m =  f +~ oo 

de F(r = 0 (2.4a) 

dr F(r e -2~mp/~ =- I (kp)  (2.4b) 

and k = 2 n m / a .  We can express I (kp)  in terms of the modified Bessel 
functions,~ls) 

I (kp)  = -2 (kp )  2 Ko(kp) (2.5) 

Using the asymptotic expansion of the Bessel function, we have 

I (kp)  ~ - ( 2 n )  m (kp) 3/2 e kp (2.6) 

for (kp) >> 1. For  p >> a, the leading term has m = 1, and 

E(p, z) ~ - ( 2~ )  2 (d/pZa)(a/p) 1/2 e 2~pla cos(2~z/a) (2.7) 

The interaction energy per unit length with another column at dis- 
tance l is the integral of the dipole moment density with the field, 

t2a \a) 

Thus, columns separated by a distance greater than their interparticle 
spacing do not interact strongly. 

Thermal fluctuations affect the field rather dramatically. Physically, 
we can make a simple argument to this effect. Suppose that there is a 
standing wave disturbance with wavevector k. Then, since the potential is 
a solution to Laplace's equation, we expect the long-distance field to go as 
e kp cos(kz). Fluctuations with wavelengths comparable to the distance l 
between chains will thus interact strongly with similar fluctuations in other 
chains. 

Suppose that a chain is undergoing longitudinal fluctuations, with par- 
ticle positions at z, = na + u,. The local density is n(z) = 1/(a + u,+ ~ - un). 
If we replace u n by u(z), then un+ 1 - u n  ~ a ~u/~z, so at long wavelengths 
n(z) ~ (l/a)(1 - Ou/~z). The z component of the electric field due to a chain 
undergoing longitudinal fluctuations is 

E(p, z) ==- 2. E(p, z) = (d/pZa) d(b F(r - z ip)  n(()) 

=(d/p2a) ,  d(J F((~)n(~b+ z/p) (2.9) 
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The average field vanishes since S dOF(~b)=O and @u/~?z)=0, but 
higher-order expectation values do not vanish. Thus, 

(E(p,z)E(p,z,))=Ta_~ffdcbdO, F(O)F(O, ) z n 

(2.10) 

In particular, 

= d2A ( 27~ dZkBT 
( E  2) p4a2 j dO [F(~b)72- 128 p4aZmc2 (2.13) 

We can calculate the phonon spectrum for a chain of dipolar particles, if 
we assume that the order of magnitude of their radius is a, and we choose 
a form for the short-range interparticle forces. The result is that 
mc 2 ~ d2a -3. This result can also be obtained by dimensional analysis, as 
d2a 3 gives the scale of interaction energy between the particles. Thus 

( g  2 ) kBZa 
/9 4 (2.14) 

The root mean square field goes as 1/p 2, compared to the exponential 
field of a perfect chain. This field does not depend upon the dipole moment, 
provided that the applied field is strong enough that the particles are 
aggregated into chains. This is due to the fact that the stiffness of a chain 
increases with d, and thus the strength of the fluctuations is inversely 
proportional to d. 

We now proceed to calculate the free energy due to interactions 

The density density correlation function is 

(n(z) n(z') ) = (l/a2)[ 1 + ( [Ou(z)/~z] [c~u(z')/3z'] ) ] 

=(1/a2) II + (1/2rc) f dkeik(z-~')k2(lu(k)12)l (2.11) 

For p >> a the most significant contribution to the field will come from 
the long-wavelength fluctuations, those for which ka ~ 1. For a reasonable 
choice of short-range interparticle interactions these phonons will have an 
acoustic spectrum, so equipartition gives ([u(k)] 2) =A/k z, where A = 
kB T/mc 2 and mc 2 is the longitudinal stiffness energy. It follows that 

d2A ~d F ( O ) F ( o + z - ~ )  (2.12) ( E ( p , z ) E ( p , z ' ) ) = ~ j  0 P 
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between parallel dipolar chains separated by a distance L Consider a chain 
that has a small deformation 

= e i k z  " i k z  ) u(z) (azke'kZ+az ke -'kz,allkeikz+all_k ,a•177 xe 
(2.15) 

where all and a i  refer, respectively, to the components of the transverse 
fluctuation parallel and perpendicular to a line from the chain to the obser- 
vation point (see Fig. 2). To first order in u, the field due to a fluctuation 
u(z) is 

E(p, z)= (2dk3/a)[-(ia~ke ik~- ia~ ke -ik~) Ko(kp) 

i e i k z  a e i k z ' ,  + taHk -- ll-k ) Kl(kp)] (2.16) 

The second-order field is proportional to the integral 

fm_~ dO F(O)(e2ikze 2ikp(~ q- e-2ikze-2'kpck - -  2) (2.17) 

The harmonic terms will not contribute to the second-order interaction 
energy, and the last term vanishes because ~ &bF(~b)=O. Thus, the 
second-order field does not contribute to the second-order interaction 
energy. Physically, this means that the energy of a fluctuation in one line 
is not affected at this order by the presence of a nearby straight line; the 

Fig. 2. Parallel and perpendicular components alt and a I of a transverse fluctuation. These 
components are defined in terms of the vector to the observation point. 
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"mass" of a fluctuation is not affected by the presence of other lines. This 
is different from the case for superconducting vortex lines (discussed in 
Section 3 below), and leads to an attractive interaction between the dipole 
lines. At this order in u, the transverse perpendicular component aa does 
not contribute to the interaction energy. 

The interaction energy with a chain a distance l away undergoing a 
fluctuation described by (bzk, bHk, bzk) is 

Umt, k = (2d2L/a 2) 2k4Ko(kl)(azkbz-k + a,_kbzk) 

-- (2dZL/a2)k4[Ko(kl)+ Kz(kl)](allkbll_k +all kbll~) (2.18) 

The interaction energy has a sharp peak at kl-~ 1, which indicates that the 
only modes that will interact strongly are those with k l ~  1. Note that 
modes of different k do not interact to this order. To obtain the total inter- 
action energy, one merely decomposes the chain fluctuations into their 
Fourier components and then integrates over the different wavevector 
contributions given by Eq. (2.18). 

The elastic energy is 

Uel, k = (L/a) mc2kZ(lazk[2 + ]bzkl 2) + (L/a) mc2k2(lallk[ 2 + Ibllk] 2) (2.19) 

where mc 2 is the transverse stiffness energy. The total energy ek decouples 
into longitudinal and transverse parts, 

ez~ = (4d2L/a 2) k4Ko(kl)(azkbz k + az kb~_~) 

+ (L/a) mc2k2(lazkl 2 + [bz~l 2) (2.20a) 

and 

ellk = (2d2L/a2) k4[ Ko(kl) + K2(kl) ](allkbll-k + all- kbllk) 

+ (L/a) mc~k2(farlkl 2 + tbrlkl 2) (2.20b) 

This contributes a factor to the partition function, 

Z k = f d 3 a k d 3 a  kd3bk d3b ke--~k/kB T 

(2 Tck]3 T)3/(da2k2) 4 

[1 -- 4(ka) 4 KZ(kl)] [1 - (ka) 4 (Ko(kl) + K2(kl)) 2 ] (2.21) 

where e k = ekz + 81p k .  

The free energy for lines a distance l apart is F(I)= 
- k s  TL/2zt S dk log Z k. Since the logarithms are additive, the contributions 

from the longitudinal and transverse fluctuations just add. 
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If we expand the/-dependent part of the free energy in powers of all, 
the lowest order term is 

kB TLa  4 f: 
F(I) = 2re l 5 dy y4[5K~(y) + K2(y) + 2Ko(y) K2(y)] (2.22) 

We can numerically integrate, with the result 

kB T La 4 
F ( / ) = - 1 1 . 1 1  2--~- 1-5- (2.23) 

When 2~zl/a >log(d2/a3kB T), this will be larger than the straight-line 
interaction energy. For typical electrorheological fluids (kB Ta3/d 2) ~ 10 -4, 
so when l/a > 3 the straight-line interaction energy will be small compared 
to the fluctuation coupling energy. (6) The long-time relaxation of these 
fluids should be governed by this interaction. 

Of course, there is another interaction, the normal van der Waals 
interaction between the particles. For colloidal particles, the dominant 
van der Waals-type interaction is the Keesom interaction, which arises 
from the coupling between thermal fluctuations in the dipole moment 
of the individual particles. The interaction energy between lines is 
Uvdw = -A(a/2)4L/l  5, where A is the Hamaker constant. For electrorheo- 
logical fluids, A varies over about (0.2-2.5) kB T, so that this coupling is an 
order of magnitude smaller than the fluctuation coupling discussed here. (6) 
Thus, the effect of this fluctuation coupling should be seen in an increase 
in the Hamaker constant. 

3. FLUX LINES IN I S O T R O P I C  S U P E R C O N D U C T O R S  

Flux lines play an important role in the behavior of type II super- 
conductors above the lower critical field Hc 1. Within a small core of radius 

the superconducting order parameter goes to zero, while the magnetic 
field extends over a radius 2, the penetration depth. Outside of the core the 
field h is governed by the London equation, 

( 1) 1 
A--~- 5 h:-~-~(r) (3.1) 

where f~(r) = q~oi~ dz 6 ( r -  ro(z)). Here q5 o is the superconducting flux 
quantum, i is the unit tangent vector to the vortex line, and ro(z ) is the 
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position of the vortex line, which we parametrize by z. The energy of a flux 
line is 

c19~ f d3r h. ic~2(p - po(Z)) (3.2) 

where we evaluate the field h at the surface of the region in which the 
superconducting order parameter goes to zero, i.e., at a radius r from the 
center of the flux line. (1) 

The Green's function for the London equation is G ( r - r ' ) =  
[ e x p ( - I r -  r'l )]/4zc [ r -  r'l. For a straight flux line at the origin, i = g and 
po(Z) = 0. The integral is then elementary, and the field is h( r )=  ~(~o/2rc2 2) 
Ko(p/2 ) in cylindrical coordinates (p, q~, z). 

For p/2 >> 1 this falls off exponentially in p/2. The energy of the line is 

L 

Leo = (~o/89z) ;o dz i. h(~) = L(qbo/4rc2) 2 log()~/~) 

where L is the length of the flux line. 
Now consider a deformed flux line for which the position as a function 

of z is given by the two-dimensional vector po(Z)=a~eikZ+a ke ikz. We 
can obtain the field by integrating the Green's function with the source 
term i(z)~ dz 6(p'-po(z)).  To obtain the energy to second order, we need 
hz to second order, but we need the field perpendicular to the unperturbed 
position of the line h i ,  only to first order (since h• will be multiplied by 
first-order terms in i• in the expression for the energy). We will quote the 
result, leaving the details of the calculation to Appendix A: 

h - qb~ (ikeikZak-- ike-ikza_k) Ko(p(k 2 + 2-2)1/2) 
• - 2rc22 

(3.3) 

and for the zeroth-order, first-order, and second-order contributions to hz 
(respectively h ~ hl, and h~) 

as mentioned above, 

4 0 hz ~ - 27~ 2 (k 2 + 2-2) '/2 K,(p(k 2 -k ,~ 2)1/2) ~. (ake,kZ + a_ke ,~z) (3.4b) 
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and 

-- la~] 2 kZKo 

1 
e - -  2 i k z  "~ + ~ E ( 2 k ) 2 +  2 2+k2](ak'ake2ikZ+a k ' a - k  J 

x Ko(PE(2k) 2 + Z-2] m) 

+ 

x K2(pE(2k)2+2-23 m) [(2k)2+2 2] 

1 

+-~)~ 2ak,a kKo (3.4c) 

We see the effects of screening here-- the field of a fluctuation falls off faster 
than the straight-line field, unlike the field due to dipole lines in a neutral 
fluid. One way of checking this expression is to take the limit k-~ 0, in 
which case the above expressions should be related to derivatives of 
Ko(p/2). 

Now we want to calculate the interaction energy between modes in 
two lines. We expect that for long-wavelength deformations (k ~ 2-1) the 
single-line energy of a mode should come from the lengthening of the line, 

Uel, k = (~o/47z}~) 2 log(2/~) dz (1 + Idpo/dzl2) 1/2 ~ Leo(1 + k 2 [ak12/2) 

(3.5) 

a e i k z  and o n e  a t  Now consider two lines, one at pa(Z)= akeek'+ -k 
_ ~  ^ - -  i k z  pb(Z) = l+ bk eikz b_he . The interaction energy is 

L L 

V,n,,~ = (r fo dZ ~ZPa(Z)3" ia(Z) + (r fO d~ haEP~(z)3, is(z) 

Just as for the dipolar chains, the total energy may be obtained by 
summing the different wavevector contributions. Also, the energy asso- 
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ciated with fluctuations in the line position normal to the vector between 
the two lines will, in general, be different from the fluctuations in the 
direction parallel to the vector between the two lines (see Fig. 3). Thus we 
write ak = akll [+  ak• x ]'). We can similiarly decompose bk. We then write 
etl for the energy of the parallel fluctuations and el  for the energy of the 
perpendicular fluctuations. (To this order there are no cross terms.) 
Appendix B gives the details of this calculation, with the result 

Lq~ 2 / (  k 2 

• ( lall l2+ Ibll] 2) 

+ [(k2 _ ,~-2) Ko(/(/c2 + ~ -2)~/2) _ (/c2 + ,~-2) K2(/(~2 + ,~-2)~/2)] 

(allkbtl k+all-kblJk))  X 

L ~ o  ~ 
= 16~z222 [fll( k, l)(tarl[ 2+ Jblll 2) +gH( k, l)(allkblr k+ all-kbllk)] 

(3.6a) 

Fig. 3. 

) 

Parallel and perpendicular fluctuations of two lines. The different polarizations have 
different energies. 
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and 

• (la~12+ Ib. l")+ [ (k2-~ 2)Ko(l(k2+.~-2)v2) 

(k 2 .4- ) - 2 )  K2( l (k  2 + )~ 2)l/2) ](a • • --k + a ~_kb • + 

L ~ o  ~ 
-167~222[fl(k, / )( la•177177177 k+a• kb• 

(3.6b) 

We have implicitly defined the coefficients fu,  f a ,  gll, and g• We 
have also included the self-energy of the lines. Note the existence of 
"mass terms" in the interaction energy, which survive in the limit k ~ 0. If 
l/;t >> 1, the Bessel functions will be very small, so the l dependence of the 
free energy will come from the terms in the partition function which are 
lowest order in K(1/2). These terms do not go to zero as k ~ 0 ;  we call 
them mass terms. 

For small enough l, the perpendicular mass term will become negative. 
If, however, the lines are far enough apart that the energy is still positive 
at the infrared cutoff, we can obtain the partition function by direct 
integration. 

The partition function is then 

Z~= f d2a,,kd2b,,kd2a•177 (~,,k +~• J 

(27tkB T) 4 
-L~2/16~z222 [ ( f ~ l -  g~l)(fzL - g~)]  -~ (3.7) 

The total partition function is Z = 1-[k Zk, and the free energy is 

F =  - k  B Tlog Z = --kB T(L/2~) f dk log Zk (3.8) 

We are interested in the l dependence of the free energy. We can 
isolate the/-dependent terms as 

F(z) = f dk logEtf ,- 2 -  g i l l  (3.9) 

Now, if the lines are far enough apart, we can retain only the lowest 
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order terms in the Bessel functions. Furthermore, all of the Bessel functions 
are equal in this limit. Thus, we obtain 

F(l) 2kB TL f (22-2 _ 4k 2) Ko(l/; Q 
2~ 3 dk (k2/2) log(2/~)  

- 2~z log(-2/() K~ ~ ~5 kmin Kmax] 

The ultraviolet cutoff is kmax ,-~ 1/2, and the infrared cutoff is 
kmin ~ 1/L. Since L ,> 2, the first term will dominate, and 

2~ log(2/~  Ko (3.11) 

If we take typical values for the parameters, then this free energy is ~ 10 4 
times the direct interaction energy (see Section 5 below)/1) 

These calculations have assumed that l~> 2. We cannot generalize to 
l~< 2, although one might expect the interaction to grow stronger as the 
lines get closer. This coupling is strongly nonlocal in z, and will not be seen 
in theories in which the problem of the behavior of vortex lines is mapped 
onto a gas of interacting bosons with equal-time interactions. 

4. FLUX LINE LATTICE 

Over most of the H - T  phase diagram one expects the flux lines to be 
arranged in an Abrikosov lattice. We now examine the effects of the fluc- 
tuation-induced interaction on the free energy of the lattice. Consider a 
triangular lattice with spacing l. The term in the two-line energy which is 
proportional to [(ak" ~)(a ~-r189 will vanish by symmetry when 
summed over the lattice. Because of this the mass terms never become 
negative, so the second-order partition function will be finite even at high 
densities. Thus, in principle, we should be able to determine the free energy 
for any line separation. To start, we sum the two-line energy over the 
lattice. If we then Fourier transform over the two-dimensional space per- 
pendicular to ~, the Hamiltonian is diagonal, and the partition function 
may be easily calculated for a particular Fourier component. We then sum 
over two-dimensional Fourier components and k vectors parallel to ~ to 
obtain the free energy. The difficult step is the original Fourier transform 
of the interaction energy terms. 

From Eqs. (3.6a) and (3.6b) we can write the kth energy component 
~k as 
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z I (i ,Ll I 
+ ~ a~(xi) 'a_k(x;) gk(lxi--xj[) 

x~ 4= xj 

+ Y', ak(x~)a k(xj).h~(x~--xj) (4.1) 
x , # x /  

where the sum is over 2D triangular lattice positions xi, and following the 
notation of Section 3, ak(xi) is the Fourier transform in the z direction of 
the position of the ith flux line. Here, g = (L/2)(4~o/4~2) 2 = (L/2) e0 and 

fk(Ixil ) = (,~-2 _ 4k2) Ko(IxY,~) (4.2a) 

g k ( l x , - x / )  = (k2-2 2) Ko(lXi-xjl/2k) 
+ (k 2 + 2-2) K2(]x~- xj]/2k) (4.2b) 

(,,,- xj)(x,- x b ~;~ (Ixi- xjl 
hk(xi-xj)=(kZ+~ ~) ix_x;12 \ ~ ,j (4.2c) 

where )~k = 1/( k2 + 2-2) u2. 
We now Fourier transform the energy in the 2D plane normal to s 

~k [-lo (2"~[k2\ 1 
--- = Z a k . ' a - k - .  L g~)~-~)+fko+gk. 8 q J 

+ Z ~ ak.,a-k-.mhk.,m (4.3) 
lm q 

In this equation, k is a one-dimensional wave vector corresponding to the 
s direction, q is a two-dimensional wave vector in the plane of the lattice, 
and l, m are Cartesian indices. Appendix C gives the derivation of this 
equation. 

The partition function is then Zk = I]4 Zkq, where 

Zkq=f d2akqd2a_k_qexp-{~ T 

~akq,a_k I log 2 k2 

(2~__T) 2{ [ log  2 k2 +hkq~x 1 

Ilog 2 k 2 - !  x ('~)(~)+fko+gkq+hk.yyl--h~q~y } (4.4) 
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The free energy is F = - k B T l o g Z = - k B T Z k q l o g Z k q .  The sum 
over q can be converted into an integral over the first Brillouin zone of the 
lattice. If l is the lattice spacing, 

F-- -k.T(L/2~)(I/2~) 2 f dk f d2qlogZ~. (4.5) 

In general, we cannot evaluate the necessary sums for arbitrary l, but 
Jn the dilute limit, where nearest neighbor interactions dominate, the sums 
are easy (see Appendix C). In this limit f ,  g, and h are all small compared 
to the line lengthening energy log(2/r so we can expand the 
integrand. Retaining only the lowest order/-dependent terms, we get 

F(l) = kB T(L/2rc)(l/2~) 2 f dk f d2q (2fk 0 + 2g,, + h,,xx + hkqyy ) (4.6) 

Substituting in the expressions from Appendix C, Eqs. (C.4), and per- 
forming the integrals, we obtain the free energy 

( L )  2 12 exp( - / /2 )  
F(1)=kBT ~3/2 log(2/~ ) (l/)o)i/2 (4.7) 

in the limit where we retain only the infrared terms in the k integration. 
This is valid for L >> 2. 

5. C O N C L U S I O N S  

For magnetic flux lines, the principal result is that the repulsion 
between flux lines is considerably enhanced by entropic effects, at least near 
H c  1 �9 

Nelson and various other authors have recently advanced the claim 
that fluctuations can melt an Abrikosov flux lattice, either near Hc2 or in 
a thin reentrant "sliver" of the phase diagram immediately above He l, 
which separates the Abrikosov flux lattice phase from the Meissner flux- 
expelling phase below Hci. In this regime, the flux lines interact weakly due 
to their separation, and the Landau-Peierls fluctuations lead the lines to 
wander considerably. One can define an entanglement correlation length 
~-z, which for an isotropic superconductor is given by 

kB Tn (5.1) 

822/61/5-6-21 
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where n is the areal density of vortex lines and eo is the line tension, given 
by Eq. (3.5). Thus, we expect that our assumption that the fluctuations of 
line position will be small compared to the distance between lines will fail 
above a length scale of ~z. Thus, we estimate that the effective fluctuation- 
induced free energy of interaction per unit length between lines separated 
by a distance l will be 

~z 12ksT exp( - l /2 )  
Ff(I) ,~ 22 7c3/2 log(2/~) (I/)~) 1/2 (5.2) 

It is important not to confuse the entanglement length ~z with the super- 
conducting coherence length ~. We should compare this fluctuation- 
induced free energy with the direct interaction energy, 

(q5o~2 

The ratio between these two energies is of the order of 

Ff ~zkB T 
(5.4) 

F 0 qs~ log(2/~) 

Because ~z oc n -1, this ratio will always go to infinity as H--*Hc1. Near 
He1 we expect to see an interaction contribution to the free energy per unit 
volume Fv of a flux lattice of density n of 

~o 12nl/4 exp(-~-~n~n) (5.5) 
F~ ~ 23/2 ~3/2 tog(2/~) 

However, we do not expect that this effect will significantly alter the 
qualitative physics of the superconductors near He1. This is because the 
entropic fluctuations of the individual lines dominate in this limit, leading 
to an "asymptotically free" theory in which the interaction between lines is 
negligible in the long-wavelength limit. (8) Near Hc~, the fluctuation- 
induced repulsion is suppressed by the exponential factor in Eq. (5.2), just 
as is the direct repulsion. 

A P P E N D I X A .  FIELD O F A W A V Y  LINE IN A 
S U P E R C O N D U C T O R  

The magnetic field in a superconductor satisfies the London equation, 

A--~5 h = - ~ s n ( r )  (A.I) 
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where the source term ~ ( r )  gives the source density for magnetic flux lines 
at r. In this Appendix we will calculate the field around a single vortex line 
with a simple harmonic modulation. The field for a lattice of lines with 
more general fluctuations may then be obtained by superposition. 

We will consider a line arranged on average at a position p = 0 and 
oriented parallel to the z axis. All delta functions of p will be two-dimen- 
Sional delta functions. We write ~ ( r )= (b0~(z  ) 6 (p -po (Z) )  and po(Z)= 
abe ibz + a be-ibz for a simple harmonic distortion of the vortex line. As in 
the above, ak is a two-dimensional vector. 

The tangent vector will be the unit vector in the direction given by 

d . ibz, 
t=-~-zz(abe'bZ+a_ke z ) : ( i k a b W b z - i k a  be ,kz, 1) (A.2) 

Then the unit vector i = t /x/ t  5, so 

i = s 1 - (k2/2)(2 I a b 2 - a2 e2ibz -- a 2 k  -k e -  2'b~)] 

+ ik(abe ibz-  a be -ibm) + O(a 3) (A.3) 

Using the Green's function for the Helmholtz equation, we obtain the 
field as 

h(z, p ) = 4 i 2 2  f f  dz' d2p' i(z ') 

x e x p { - [ ( z - z ' ) Z + l P - P ' 1 2 ] l n / 2 } 6 ( p ' - p o ( z ' ) )  (A.4) 
[ ( z -  z ')  2 + IP-- P'I:]  in 

We only need h• to first order in ab. We calculate this by integrating 
over the delta function and then expanding. We obtain 

q5 o 
h• - 4~2z J dz' [ ika k exp(ikz') - ika_b exp( - i k z ' ) ]  

exp{ - [(z - z') 2 + Ip1211n/2 } 
x 

[(Z -- Zt) 2 J- IPl 2] 1/2 

_ 4o [ikab e x p ( i k z ) -  ika b e x p ( -  ikz)] Ko(p(k 2 + 2-2)i/2) 
2 s ) f  

where we have used the identity 

f+  ~ exp[ikz  - (z 2 + p2)ln/2] 
~o dz (Z2 _{_ p2)1/2 - -  2Ko(p(k 2 + 2 2) 1/2) 

Ko is the zeroth-order modified Bessel function. (15) 

(A.5) 

(A.6) 
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We need to know the z component of the field to second order in ak, 
which requires a slightly more complicated calculation. After performing 
the integration over the delta function, we have 

h=(z, p) = f dz' 1 - [2 lakl  2 - a 2 exp(2ikz') - a2k exp( - 2ikz')] 

exp { - [ (z - z')2 + I P - Po(Z')l 2 ] 1/2/2 } 
x [ ( z _  z,)2 + ip_  p0(z,)12] m (A.7) 

We can expand the integrand in powers of po/r, where r2= 
( z -  z ')2+ p2. To second order in po/r, 

exp{ - [(z - z') 2 + IP - Po(Z')l 2] 1/2/~. } 
[ ( z -  z ' )  2 + Ip  - po(z')12] 1/2 

- - exp( - - r / JL) [1 - fP 'P~  - 2 r  P~ ' 2-~r)~) 4- 1 

(,  ,+ 3)] 
+ {p" po) 2 2 7 7  + 2-7)7 (A.8) 

Now we need to evaluate several integrals. The first is identical to 
Eq. (A.6). Taking d/dp of both sides of Eq. (A.6), we obtain 

f+~176 1 J  
_ ~ z 2 + p2 ~ + (z 2 + ) ~ ) t / 2  

2 (k z + 2_2)1/2 Kl(p(k 2 + 2_2)~/2) (A.9) 
P 

Here Ka is again a Bessel function. If we now take the derivative again, 
and use the Bessel function recursion relations, we obtain the integral 

+~o exp[ ikz_(z2+p2)U2/2] (1  1 3 )  
d= 

k2 + p 2 
- - -  K2(p(k 2 + 2-2)'/2) (A.10) 

2p 2 

Putting together Eqs. (A.6)-(A.10), and using the fact that Kl(x)= 
(x /2)[K2(x)-Ko(x)] ,  we obtain Eq. (3.4) for hz. This solution has the 
proper form, being a sum of solutions of the homogeneous Helmholtz 
equation, and it has the proper k = 0 limit. 
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This calculation becomes much more difficult for the case of an 
anisotropic superconductor, due to the fact that the equation satisfied by 
the magnetic field is no longer a simple Helmholtz equation. 

APPENDIX  B. INTERACTION ENERGY OF TWO W A V Y  LINES 
IN A S U P E R C O N D U C T O R  

In this appendix we will calculate the interaction energy of two fluc- 
tuating lines in a superconductor. Without loss of generality, we can regard 
these lines as fluctuating harmonically, with a wave vector k (as in 
Appendix A above). As in Section 3, let us label these lines a and b, with 
the position of line a being given by pa(z)=a~exp( ikz)+a k exp( - i k z ) ,  
and the position of line b given by pb(Z)= 1+ bk exp(ikz)+ b k exp(-ikz) .  
The interaction energy is 

Uin t = (40/87/7) f f  dz d2p ha. ib6(p - Oh(Z)) 

-t- (~0 /8~)  f f  dz d2p h b �9 ia(~(D-- pa(Z)) (B.1) 

As in the above, delta functions of p are two-dimensional delta func- 
tions. Let us focus our attention on the first of these integrals. Only those 
terms in Eq. (B.1) in which there is initially no dependence on z will remain 
after integrating over z, due to the harmonic dependence of the fluctua- 
tions. Using subscripts to indicate order in the fluctuations, we can write 
immediately three obvious terms: the nonharmonic parts of h~- i b, h~. i~, 
and h~. i l  b. In addition, there are two terms arising from the harmonic 
dependence of the argument of the delta function. 

The first three terms are, respectively, 

(') cas~. k~ la~l ~ Ko (13.2) U1 - 16Tc2 ~: 

LOSo~ 
U2 = 16~222 ( - k 2  lakl2 Ko ( { )  

q / \ 1 
+ �9 l lak i2JK2t~)§  (13.3) 

Lq~2 k2(ak �9 b_ k + a_k.  bk) Ko(l(k 2 + 2-2) j/2) (B.4) U3 - 16~222 



1278 Halsey and Toor 

The next term comes from evaluating h~. fb o over the first-order expan- 
sion of the delta function, 

U4 = ~ f dz dZp (~.ake ik~+ f~.a e i k z  , I 

16n222 ~ J 

x (kaq-,~ 2)'/2K,((k2+,~-2)l/RIpl) 

x [ ~ ( p - l - ( b k e i k Z + b  ke- ikz ) ) - -~(p- - l ) ]  (B.5) 

We can integrate over the delta function, and then expand the integrand to 
obtain 

o z -ik . . . .  ikz .  b e - , k z~k2+2-2  
U4= 16n222 d (aki eikz + a_kie )to~je . -kj J 2 

{6u(K2(l[k 2 + 2-2],/2) _ Ko(l[k 2 + ~ -2 ]  I/2)) X 

-- 2 IJJ K2(/( k 2 / 2  + 2-21~/2)} (B.6) 

where i, j are Cartesian indices. This is 

U =L 167C2)~ 2 2 

x {(a k �9 b k + a_k" bk)UK=(l(k= + ) -2)1/2) _ Ko(l(k 2 + ) -2)~/2)] 

- 2 [ ( / ' a k ) ( / ' b _ k ) +  ( / ' a _ D ( / ' b D ]  K2(l(k2k -). 2)1/2)} (B.7) 

The final term comes from the second-order expansion of the delta 
function over the zeroth-order field, 

U5 r (dz(bke ,k~+b k e ) ( 4  + -k ) 'V__V~K0(~) ~k~ b e ik~ b e - ikz l 
16n222 J 

= L  167r2~'2221 { I 1 1 (~)+21 ( ~ ) }  ( b k . h ( b _ k - h - - ~  Ibkl: K2 Ibk[ZKo 
(B.8) 

If we sum up all these terms, add in the equivalent terms with a and 
b interchanged, add in the self-energy of the lines, and group ~ into parallel 
and perpendicular polarizations, we obtain Eqs. (3.6a) and (3.6b). 
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A P P E N D I X  C. ENERGY OF A FLUX LATTICE 

We have Eqs. (4.1)-(4.2) for the interaction energy of the lattice as a 
sum over real space. In order to calculate the partition function, we must 
diagonalize this energy by expressing it as a sum over reciprocal lattice 
sites. 

Define a~q and fkq by 

a~(x/) = ~ a~q exp(iq �9 xi) (C.la) 
q 

fk(xfl = ~ f k q  exp(iq �9 x j) (C.lb) 
q 

with similar expressions for g and h. The momentum k refers to the z 
direction in reciprocal space; the vector q is a two-dimensional vector in 
the plane of the lattice. The first term in the energy is the sum 

S0 = ~ ak(x,) �9 a _k(Xi) log(A/r 
xl 

= 2 a k q "  a k -  q log(2/~)k2/2 
q 

(C.2a) 

The next term in the energy is the sum 

S1 = 2 ak(xi)" a ~(x/) ~ fk(xfl 
xz xj~x~ 

= Z akqx'a--kq2fkq3 2 exp[i(ql+q2)'xi+q3"xj]) 
qlq2q3 xl ~ xj 

= 2 akql'a-kq2fkq3(~ql+q2,0Oq3, 0 
qlq2q3 

: Z ak." a_k qA0 
q 

(C.2b) 

The term involving sums of hk is 

$2=  ~ ak(x,) a_~(xg)-h~ 
x,#xy 

= Z  Z akq~lakqzmhkq3tm 2 exp[i(ql+q3)'xi+i(q2-q3)'xj] 
lm qlq2q3 x ~ x j  

= 2 E a k q l  a k-qmhk qlrn 
lm q 

(C.2c) 
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Here l and m are two-dimensional Cartesian indices, and k and q have 
the same meaning as above. A similar calculation gives the term involving 
gk as 

$3 = ~  a~:q'a-k ,tgkq (C.2d) 
q 

If we add So, $1, $2 and $3 together, we obtain Eq. (4.3). 
Here 

, 3a, 
N r  

gk, q=~-~ 2 e x p ( - i q . x j )  ( k 2 - 2 - 2 )  Ko ~ +(k2+,~-2)K2\-~kjj 
x1r 

(C.3b) 

and 
1 () h~qlm=~ 2(k2 + 2-2) xj,o ~ exp(-iq'xj)XjlXjm ~2 ~xi (C.3c) 

where, as in the above, 2k = 1/(k 2 + 2-2) 1/2. 
In general, we cannot evaluate these sums analytically, although we 

can do so in the dilute limit, where the line separation l is large compared 
to 2. There we retain only nearest neighbor interactions. Also, in this limit, 
Ko(I/2) = K2(l/2). Then, for a triangular lattice with the base of the triangle 
along the x axis, 

1 ( 3 2 - 2 -  12k2) K0 (~ )  (C.4a) fko rc 

( )cos , 4b, gkq 7z 

h~x - -  Ko 2 cos(q~/) +cos  cos (C.4c) 
g 

K o cos cos (C.4d) 
7r 

In this limit, h:,y does not contribute to the free energy. 
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